7 research outputs found

    Enhancing General Face Forgery Detection via Vision Transformer with Low-Rank Adaptation

    Full text link
    Nowadays, forgery faces pose pressing security concerns over fake news, fraud, impersonation, etc. Despite the demonstrated success in intra-domain face forgery detection, existing detection methods lack generalization capability and tend to suffer from dramatic performance drops when deployed to unforeseen domains. To mitigate this issue, this paper designs a more general fake face detection model based on the vision transformer(ViT) architecture. In the training phase, the pretrained ViT weights are freezed, and only the Low-Rank Adaptation(LoRA) modules are updated. Additionally, the Single Center Loss(SCL) is applied to supervise the training process, further improving the generalization capability of the model. The proposed method achieves state-of-the-arts detection performances in both cross-manipulation and cross-dataset evaluations

    Forgery-aware Adaptive Vision Transformer for Face Forgery Detection

    Full text link
    With the advancement in face manipulation technologies, the importance of face forgery detection in protecting authentication integrity becomes increasingly evident. Previous Vision Transformer (ViT)-based detectors have demonstrated subpar performance in cross-database evaluations, primarily because fully fine-tuning with limited Deepfake data often leads to forgetting pre-trained knowledge and over-fitting to data-specific ones. To circumvent these issues, we propose a novel Forgery-aware Adaptive Vision Transformer (FA-ViT). In FA-ViT, the vanilla ViT's parameters are frozen to preserve its pre-trained knowledge, while two specially designed components, the Local-aware Forgery Injector (LFI) and the Global-aware Forgery Adaptor (GFA), are employed to adapt forgery-related knowledge. our proposed FA-ViT effectively combines these two different types of knowledge to form the general forgery features for detecting Deepfakes. Specifically, LFI captures local discriminative information and incorporates these information into ViT via Neighborhood-Preserving Cross Attention (NPCA). Simultaneously, GFA learns adaptive knowledge in the self-attention layer, bridging the gap between the two different domain. Furthermore, we design a novel Single Domain Pairwise Learning (SDPL) to facilitate fine-grained information learning in FA-ViT. The extensive experiments demonstrate that our FA-ViT achieves state-of-the-art performance in cross-dataset evaluation and cross-manipulation scenarios, and improves the robustness against unseen perturbations

    S-Adapter: Generalizing Vision Transformer for Face Anti-Spoofing with Statistical Tokens

    Full text link
    Face Anti-Spoofing (FAS) aims to detect malicious attempts to invade a face recognition system by presenting spoofed faces. State-of-the-art FAS techniques predominantly rely on deep learning models but their cross-domain generalization capabilities are often hindered by the domain shift problem, which arises due to different distributions between training and testing data. In this study, we develop a generalized FAS method under the Efficient Parameter Transfer Learning (EPTL) paradigm, where we adapt the pre-trained Vision Transformer models for the FAS task. During training, the adapter modules are inserted into the pre-trained ViT model, and the adapters are updated while other pre-trained parameters remain fixed. We find the limitations of previous vanilla adapters in that they are based on linear layers, which lack a spoofing-aware inductive bias and thus restrict the cross-domain generalization. To address this limitation and achieve cross-domain generalized FAS, we propose a novel Statistical Adapter (S-Adapter) that gathers local discriminative and statistical information from localized token histograms. To further improve the generalization of the statistical tokens, we propose a novel Token Style Regularization (TSR), which aims to reduce domain style variance by regularizing Gram matrices extracted from tokens across different domains. Our experimental results demonstrate that our proposed S-Adapter and TSR provide significant benefits in both zero-shot and few-shot cross-domain testing, outperforming state-of-the-art methods on several benchmark tests. We will release the source code upon acceptance

    Dynamic regulation of CD28 conformation and signaling by charged lipids and ions

    No full text
    CD28 provides an essential co-stimulatory signal for T cell activation and its function is critical in antitumor immunity. However, the molecular mechanism of CD28 transmembrane signaling remains elusive. Here, we find that CD28 conformation and signaling are regulated by two counteractive charged factors, i.e. acidic phospholipid and Ca2+ ion. NMR structure shows that acidic phospholipids can sequester CD28 signaling motifs within the membrane, thus limiting CD28 basal signaling. T-cell receptor (TCR) activation induces local [Ca2+] increase around CD28, and Ca2+ can use its charges to directly disrupt CD28-lipid interaction, which leads to CD28 opening and signaling. TCR, Ca2+ , and CD28 together form a dual positive feedback circuit to significantly amplify T cell signaling and therefore increase antigen sensitivity. This work unravels a new regulatory mechanism of CD28 signaling, contributing to the understanding of the dependence of the co-stimulation signaling on TCR signaling and the high sensitivity of T cells
    corecore